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1. Introduction and Research Question

A North Carolina gubernatorial candidate’s campaign team hired our research firm to identify the determinants
of crime and make policy recommendations that would aid the campaign. The candidate’s team provided us
with a set of crime data from 1987. This introduced an immediate challenge, as the dataset was 30 years old
and may no longer be representative of North Carolina crime. However, factors influencing crime should be
relatively consistent and we were still able to build a useful model from this dataset. We started with an
exploratory data analysis so that we could build models that provided insights into factors related to crime.

We selected crime rate as our dependent variable, and, following our initial examination of the data,
chose probability of arrest, population density, and high youth concentration as our initial set of factors
demonstrating relationships with crime rates. This led to our research question. We sought to:

Examine the relationship between probability of arrest, population density, and high youth concentration and
the dependent variable, crime rate, in order to determine whether related policy changes could be effective in
lowering crime rates.

Our approach was to begin with these variables and refine the initial model through additional linear
regressions. This would help us identify any variables in the existing data that explained the variation in the
model and allow us to pinpoint how much of that explanation is attributed to omitted variables.

Our preliminary assessment of factors that could affect crime was based on our existing knowledge coupled
with FBI reports. Many factors we identified as contributing to crime rates in general did not exist in the
dataset and we did not find suitable proxy variables. We proceeded with our analysis expecting to see omitted
variable effects. However, with further variable analysis and model assessment, we felt we had enough data in
place to provide directional guidance and formulate policy recommendations.

2. Exploratory Data Analysis

crime = read.csv("crime_v2.csv")

Back Up Dataset

Prior to any data transformations, we made a back up copy of the raw data.
crime_raw <- crime
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Check for Data Completeness

An initial scan of the data set revealed that it contained 6 rows entirely composed of NA data. These provided
no information, so we opted to delete them.
crime = crime[!is.na(crime$county),]

Check for Duplicate Records

We examined the numerical county indicators in order to determine whether it contained any duplicate
records.
length(unique(crime$county))
nrow(crime)
paste("The number of unique counties is",length(unique(crime$county)) ,

"while the number of records in the dataset is", nrow(crime))

## [1] 90
## [1] 91
## [1] "The number of unique counties is 90 while the number of records in the dataset is 91"

We found a single duplicate county record. All of the data was consistent between the two records sharing a
county ID. We determined that this meant there was a true duplicate and that one of the records could be
removed.
crime = crime[!duplicated(crime),]
paste("Now there are total of ",nrow(crime)," rows and ",ncol(crime)," columns.")

## [1] "Now there are total of 90 rows and 25 columns."

Note: There are 100 counties in North Carolina, and we had data for only 90 of them. Missing counties
could contain data that would skew the analysis, e.g., if a missing county was highly populated with a high
crime rate, or highly populated with a low crime rate. We concluded that analyzing the data on a regional
level made the most sense.

We did note that the county index numbers appeared to correspond to the Federal Information Processing
Standard (FIPS) codes for counties, which allowed us to identify which counties were missing from the data.1

Assign Each County to a Region and Check for Data Consistency

North Carolina consists of three main geographic regions: the Atlantic coastal plain, occupying the eastern
portion of the state, the central Piedmont region, and the Mountain region in the west. Our dataset only
contained regional indicator variables for the West and Central regions. We made the assumption that
counties with no assigned region could be considered East, and cross-reference the data with an external
reference to validate that assumption.2 We assigned 35 counties with no prior regional designation to the
east region.

#Ideally, there should be 1 either in central or west...we should check for bad data.
overlapCounty = sum(crime$central==1 & crime$west==1)
totCentral = sum(crime$central==1 & crime$west==0)
totWest = sum(crime$west==1 & crime$central==0)
crime$east = ifelse((crime$central==0 & crime$west==0), 1,0)

1https://www.ncpedia.org/geography/counties
2https://en.wikipedia.org/wiki/List_of_counties_in_North_Carolina
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Note: We noticed that one county was marked as both central and west. Per ncpedia.org, Madison County
(FIPS 115) is part of the Central Piedmont region. Hence, we assigned it to the central region and removed
the west indicator.

a= crime %>% filter(central==1 & west==1) %>% mutate(west=0)

Crime Rate Analysis

crmrtePlot = boxplot(crime$crmrte, horizontal=TRUE,
main = "Crime commited per person" , col=c("steelblue"))
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Crime commited per person

crmrteOtlr = crime[crime$crmrte >= crmrtePlot$stats[5],]

Note: There were six outliers of high crime rate regions. Of those, four were designated as urban areas.
We decided not to modify these data points and instead took a closer look at how crime was spread across
various regions of North Carolina.

Crime Rate by Region

Each region has several characteristics distinct from the others:

• Western North Carolina has one urban county and is mostly characterized by the rugged, moun-
tainous terrain of the Blue Ridge Mountains. Sparsely populated, it encompasses many national parks,
national forests, and state parks. Tourism as one of its primary industries: the Blue Ridge Parkway and
Great Smoky Mountains National Park were Nos. 1 and 3 on the National Parks Services’ most visited
destinations in 2017.3 NC is also the nation’s second-leading producer of Christmas trees.4 Western
NC is the most racially homogeneous of the regions: The 15 counties with the lowest pctmin80 are in
the western region; 20 of the region’s 22 counties (in this dataset) were in the bottom 30 for pctmin80.

• Central North Carolina (“the Piedmont”) includes its largest metro areas. Charlotte (Mecklen-
burg County) is one of the nation’s leading banking centers. The Piedmont Triad (Greensboro, High
Point, and Winston-Salem; Guilford and Forsyth Counties) were hubs of furniture, textile, and tobacco
industries. The Research Triangle encompasses Raleigh, Durham, and Chapel Hill and is home to
Research Triangle Park, UNC-Chapel Hill, Duke University, and N.C. State University. Outside of the
metro areas, the Piedmont includes mill towns centered around furniture and textiles (although these
have declined considerably since 1987), as well as poultry, cattle, and other farming.

• Eastern North Carolina (“Coastal Plain”) is historically the poorest and most agricultural of
the three regions. NC is one of the nation’s top pork5 and tobacco producers, with both industries

3https://www.nps.gov/orgs/1207/02-28-2018-visitation-certified.htm
4https://www.agmrc.org/commodities-products/forestry/christmas-tree-profile
5https://www.pork.org/facts/stats/structure-and-productivity/state-rankings-by-hogs-and-pigs-inventory/
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concentrated in the Coastal Plain. Other notable crops include soybeans, peanuts, cotton, sweet
potatoes, and corn.6 Tourism, centered around the Outer Banks and other beaches, is another notable
industry. Eastern North Carolina’s two metro areas include Wilmington (New Hanover County), a
deep-water port near the coast, and Fayetteville (Buncombe), which is adjacent to Fort Bragg, the
nation’s largest army base. Onslow County on the coast includes Camp Lejeune, a large U.S. Marine
Corps installation.

We performed an exploratory analysis of crime rates that included regional variables to be aware of and
control for any potential regional differences. Each region is distinct enough in industry and demography
that we explored certain key metrics by region. Beyond the regional designations, the dataset also included
an “urban” variable. We determined that this was not a region unto itself. Rather, it was a separate category.
Urban areas could appear in any of the geographic regions. However, as urban areas typically exhibit unique
crime characteristics, we thought it would be of value to examine these areas as a group alongside the regions.

#Create regions
crime$regWurban = ifelse(crime$urban==1,"Urban",ifelse(crime$west==1,"West",

ifelse(crime$east==1,"East",ifelse(crime$central==1,"Central","Other"))))

ggplot(crime, aes(x=regWurban, y=crmrte), ) +
geom_point(size=1,na.rm = TRUE,col="steelblue") +
labs(title = "Crime Rate in different regions of NC including urban",

x = "Regions", y = "Crime rate")+
theme_bw()
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Crime Rate in different regions of NC including urban

Note: As we expected, urban areas had substantially higher crime rates than any of the geographic regions.
Traditional logic supports the higher instance of crime in urban areas. Among regions, the counties in the
west appeared to be the safest in terms of crime.

Crime Rate and Offense Mix

The variable mix describes and categorizes crime. We determined it would not make sense to use this as an
independent variable in any model in which crime rate was the dependent variable. Exploring the factors in
face-to-face crime is a legitimate question, but we chose to focus on the broader crime rate.

6https://www.nass.usda.gov/Statistics_by_State/North_Carolina/Publications/County_Estimates/index.php
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Minority Percentage

We noticed a slight positive correlation between minority population percentage and crime rate:
ggplot(crime, aes(pctmin80, crmrte)) +

geom_point(size=1.5,na.rm = TRUE,col="steelblue") +
geom_smooth(method = "lm", color="black",se = FALSE) +
labs(title = "Minority percentage vs Crime rate",

x = "Minority percentage", y = "Crime rate")+
theme_bw()
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Minority percentage vs Crime rate

Minority percentage may be an indicator of poverty. North Carolina was a slaveholding and Jim Crow state,
and even the demise of de jure segregation under Jim Crow was followed by de facto segregation, white flight,
and urban renewal that affected black businesses in such cities as Greensboro and Durham. As such, many
minority communities in North Carolina are historically economically depressed and pctmin80 may be an
indicator of poverty. The state does have poor white communities, though, so it is far from an ideal predictor.

Probability of Arrest, Conviction, Prison Sentence, Average Sentence

Looking at the ‘probability’ variables, we made the following observations:

• The Probability of conviction field was classed a factor instead of a number; this required conversion to
be usable.

• Probability of arrest and probability of conviction were defined as ratios of arrests to offenses and con-
victions to arrests, respectively. Both fields contained data exceeding 1, which appeared counterintuitive
and required additional study.

crime$prbconv <- as.numeric(paste(crime$prbconv))
arrGr1 = sum(crime$prbarr>1)
convGr1 = sum(crime$prbconv>1)

There was a single record with the ratio of arrests to offenses greater than 1. This anomaly could reflect an
error in data gathering, but it is conceivable that the definition of probability of arrest was not confined to a
single arrest per crime, and that multiple arrests could be made for a single offense. In this scenario, it is
possible that the ratio could exceed 1, so we opted not to adjust this outlier.

With 10 records, probability of conviction represented a much more substantial problem. Multiple convictions
are permitted for a single offense. Convictions may also have occurred in 1987 related to arrests from prior
periods, so while unlikely, it is possibile that there could be ratios greater than 1. Therefore, we kept the
values unchanged at this stage and made certain to look for high leverage data points as we moved forward.
summary(crime[,c("prbarr","prbconv","prbpris","avgsen")])
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## prbarr prbconv prbpris avgsen
## Min. :0.09277 Min. :0.06838 Min. :0.1500 Min. : 5.380
## 1st Qu.:0.20495 1st Qu.:0.34422 1st Qu.:0.3642 1st Qu.: 7.375
## Median :0.27146 Median :0.45170 Median :0.4222 Median : 9.110
## Mean :0.29524 Mean :0.55086 Mean :0.4106 Mean : 9.689
## 3rd Qu.:0.34487 3rd Qu.:0.58513 3rd Qu.:0.4576 3rd Qu.:11.465
## Max. :1.09091 Max. :2.12121 Max. :0.6000 Max. :20.700

In this case, we wanted to observe whether higher rate of arrest, rate of conviction, or length of prison term
had any relationship with crime rates.

scatterplotMatrix( ~ crmrte + prbarr + prbconv + prbpris + avgsen,
data = crime, diagonal=c("histogram"),

main = "Crime rate with various probabilities of crime" ,
use=c("complete.obs"), col=c('black','black'), regLine = list(method=lm, col='red'))
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Crime rate with various probabilities of crime

We did observe lower crime rates associated with increasing probabilities of arrests and convictions. However,
the correlation between crime committed (crmrte) and average sentence days (avgsen) was quite low. We
then thought it would be interesting to see how probabilities of arrest and conviction were distributed across
regions.
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Density

The density field was defined as people per square mile. However, the data did not seem to match logically
with this definition. As per U.S. Census Bureau data, in 1990, the average number of residents per square
mile was 136.4 in North Carolina. The mean in our dataset was 1.42. We made an assumption that our
density field was off by a factor of 100. We transformed this field by multiplying density by 100, which
produced more logical residents-per-square-mile estimates.

However, even after performing the transformation, there was an abnormally low minimum value
of 0.002 residents per square mile for Swain county. As of the 2000 Census, Swain County (FIPS 173) had a
population of 11 residents per square mile. Even though we did not modify the data at this stage, we noted
the outlier so that we could see later how this high leverage data point influenced our modeling.

crime$density100= 100 * crime$density
summary(crime$density100)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.002 54.718 97.924 143.567 156.926 882.765

Police Per Capita by Region

ggplot(crime, aes(x=regWurban, y=polpc), ) +
geom_point(size=1,na.rm = TRUE,col="olivedrab") +
labs(title = "Police per capita in different regions of NC",

x = "Regions", y = "Police per capita")+
theme_bw()

0.0025

0.0050

0.0075

Central East Urban West

Regions

P
ol

ic
e 

pe
r 

ca
pi

ta

Police per capita in different regions of NC

Although the west region had the lowest crime rates, one of its counties had an abnormally high police per
capita rate. Further, even though crime is high in urban areas, the police presence per capita did not appear
to be overly substantial in these areas.

We hypothesized that we should be able to understand better if we examined crime vs. police per capita
across the various regions. The outlier value in the west region had a considerable effect on this comparison.
It was extreme - nearly double the next highest rate in the state. Although there is a chance that this was
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correct, it is highly unlikely. A comparison with 2015 police employee data7 revealed that Washington, DC,
had the highest U.S. police per capita rate of 0.0065, which is substantially lower than this 0.009 outlier.
Hence, we determined that it would be better to replace the outlier with the mean of police per capita for
the west region.

crime$polpc =ifelse(crime$polpc == max(crime$polpc),
mean(crime[crime$west == 1 & crime$polpc < 0.009,]$polpc),crime$polpc)

summary(crime$polpc)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0007459 0.0012378 0.0014897 0.0016255 0.0018587 0.0044592

Crime Rate vs Police Per Capita

Initially, we instinctively believed police per capita was a variable that would have a strong relationship
with crime rate and planned on including it in our models. However, our exploratory data analysis showed
a positive correlation between police per capita and crime rate. Further discussion led us to conclude that
police per capita could be thought of as “which came first, the chicken or the egg”. Was higher police per
capita effective in reducing crime, or was higher police per capita a response to high crime rates or the number
of what could be called “severe crimes” (e.g., murder)?

Because of the potentials for reverse causality, we decided not to incorporate the police per capita variable in
Model 1 or Model 2.
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Correlation between Police Per Capita and Crime Rate

Tax Per Capita

Note: We assumed that this field represented state income tax. Examining the tax per capita data led us
to believe that the scale of this field was off by a factor of 100. Multiplying the data by 100 brought it in
line with historical per capita state tax figures.8 The maximum tax per capita value of $11,976 looked high
compared to those in the rest of the counties. We did not modify this point, but noted it for further review.

crime$taxpc100= 100 * crime$taxpc
summary(crime$taxpc100)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2569 3073 3492 3816 4101 11976

7http://www.governing.com/gov-data/safety-justice/police-officers-per-capita-rates-employment-for-city-departments.
html

8https://taxfoundation.org/state-and-local-tax-burdens-historic-data/
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Weekly Wage of Service Industry and Average Wage

Looking at the summary data, we also identified an anomaly in the maximum weekly wage of the service
industry ($2,177, vs. the mean of $275). This would be astronomically high for the 1987 time period and the
industry, and is likely the result of error. We analyzed how many such instances were present with a box plot.

boxplot(crime$wser, main = "Weekly wage of service industry" , col=c("steelblue"),horizontal = TRUE)

500 1000 1500 2000

Weekly wage of service industry

There was only one county with an abnormally high wage. The value is clearly not representative of the
North Carolina population and could have resulted from a data entry error. We decided to replace the lone
anomaly with the mean of the rest of that column.

crime$wser = ifelse((crime$wser>2100), mean(crime[crime$wser<2100,]$wser),crime$wser)
summary(crime$wser)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 133.0 229.3 253.1 254.0 275.9 391.3

Crime Rate and Young Male Population

Per the FBI’s assessment of variables affecting crime, crime is higher in areas with larger concentrations of
youth. This does not specifically call out young males, but research overwhelmingly demonstrates that males
commit crimes more often than women.9 We therefore determined that we wanted to observe the relationship
of young male population with crime.

ggplot(crime, aes(x=pctymle, y=crmrte), ) +
geom_point(size=1,na.rm = TRUE,col="steelblue") +
geom_smooth(method = "lm", color="black",se = FALSE) +
labs(title = "Young Male Percentage vs Crime Rate",

x = "Young male percentage", y = "crime rate")+
theme_bw()

9https://books.google.com/books?id=CJm4AIc4sZEC&pg=PA88#v=onepage&q&f=false
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We did observe that there was one data point for which the young male percentage was much higher than
those of the rest of the counties. The census data of 2000 reported a median age of 24 in Onslow County
(FIPS 133), home to Camp Lejuene. It is a very young county, explaining the spike in the young male
percentage. We assumed this was also true in 1987 and opted not to modify this data point.

EDA Observations

After looking at the data closely, we had several observations:

• Crime had a positive correlation with density. This was expected.
• Crime had a negative correlation with probability of arrest and probability of conviction. This was

expected as well, as more police intervention should theoretically correlate with less crime.
• Crime had a positive correlation with police per capita. This was quite unexpected and may be a case

of reverse causality. We will discuss this in more detail in a later section.
• Crime rates were higher in urban areas than in the rest of the regions, an expected result.

3. Model Specification

Determination of Dependent Variable

In building our model, our first step was to select a dependent variable to represent crime; from the available
data, our clear best option was crime rate. We first examined the distribution of this variable.

hist(crime$crmrte,main="Dist of crime rate ",xlab = "crime rate",breaks = 20,
col="steelblue")

hist(log(crime$crmrte),main="Log Dist of crime rate",
xlab = "log crime rate",breaks = 20,col="olivedrab")
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The histogram of the crime rate data was positively skewed. We also looked at employing a logarithmic
transformation to the crime rate data, and the resulting distribution looked mostly normal. Even though
there were no regression assumptions that required the dependent variable to be normal, there were many
advantages of having a logarithmic dependent variable:

• It allows non-linear or very general relationships between variables.
• In a model with heteroskedasticity, a logarithmic transformation suppresses variation.
• The logarithm suppresses skewness, leading to more normal errors.
• If the dependent variable contains outliers, a logarithmic transformation can reduce the influence of

those observations.
• It would allow us represent the crime rate in percentage terms.

With these factors in mind, we decided to make log(crmrte) our predicted variable.

Determination of Control Variables

Our initial, general research question then followed. We sought to:

Examine the relationship between identified independent variables and the dependent variable, crime rate, in
order to determine whether a policy of changing the independent variables would be effective in lowering
crime rates.

We next considered this problem intuitively. What factors did we instinctively assume would result in high
crime rates? Classically, we would consider major factors to include:

• Urban areas/population density
• Unemployment
• Economic conditions/poverty
• Police presence
• Social services
• High concentration of youth in a population

These are consistent with the FBI’s assessment of variables that affect crime.10 However, the FBI also cites
additional factors, including:

• Stability of the population with respect to residents’ mobility
• Modes of transportation and highway system
• Cultural factors
• Climate
• Family conditions

10https://ucr.fbi.gov/hate-crime/2011/resources/variables-affecting-crime
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• Criminal justice policies
• Citizens’ attitudes towards crime

Comparing these established factors against the available data suggested that we might see substantial
omitted variable effects, but we concluded there should be enough data to proceed with our analysis.

General Model Assumptions

CLM1 and CLM2 are common across all the models. They are summarized below:

CLM1. Linear in Parameters: Here, the parameters are the coefficients on the independent variables
(often marked as β). We made sure that all our models had linear coefficients.

Note: Although the coefficients must be linear, the dependent and independent variables may not be, which
allowed us to model nonlinear relationships.

CLM2. Random Sampling: This dataset was first used in a study by Cornwell and Trumball, researchers
from the University of Georgia and West Virginia University. Apart from that, we had no knowledge of how
the data was collected and would need more details to determine whether we had a true random sample.

Model 1

Based on our EDA analysis and research, we identified the following as our predictor variables:

• Density - High population density is classically associated with high crime. It also brings forth factors
like urbanization and changes in the area’s economic conditions. The density variable in this dataset
had very high maximum and minimum values. We determined that taking the logarithm of density
would help reduce the residual that would be generated exclusively due to these high leverage points.
Moreover, it would help us represent the data as a percentage.

• Probability of Arrest - Since probability is between 0 and 1, we were able to multiply by 100 to
represent it as a percentage and discuss the percent variation of crime rate with each percentage point
variation in arrest rate.

• central - This is a dummy variable to help us understand the characteristics of central region, with
respect to the eastern region.

• west - This is a dummy variable to help us understand the characteristics of western region with respect
to eastern region.

• Young male pct between ages 15-24 - As with probability of arrest, this variable was easily
represented as a percentage by multiplying by 100. This made it easy to report the practical outcome
of any relationship with crime rates. Our experience told us that population density and youth
concentration could have a relationship with crime rates. We did not have a variable in our dataset to
represent youth concentration, but we did have percent of young males in the population. We deemed
this an adequate proxy for overall youth, but any gender component would also have been built into
these figures. Encompassing both of these factors, we determined that it would be a strong candidate
for a useful predictor.

crime$prbarr100 = crime$prbarr*100
crime$pctymle100 = crime$pctymle*100

We chose to include probability of arrest in our analysis. Defined as the ratio of arrests to offenses, we
determined that this would serve as an adequate proxy for police effectiveness. At the same time, we want
to note that probability of arrest can be impacted by various factors, such as: how well police officers feel
they are being compensated (pay could be commensurate with motivation) and bribery, which can result in
police “looking the other way”. Additionally, the probability of arrest was drawn from the FBI’s Uniform
Crime Report, which gathers data through “a nationwide, cooperative statistical effort of nearly 18,000 city,
university and college, county, state, tribal, and federal law enforcement agencies voluntarily reporting data
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on crimes brought to their attention” (note the word “voluntarily” - would police departments with statistics
that reflected poor performance report their data?).

Note: We also wanted to analyze the urban indicator variable, but omitted it for two reasons: first, it was
highly correlated with density, and could have resulted in multicollinearity problems in our model. Second,
urban is not mutually exclusive with any of the regional indicator variables, so we would have had overlap in
our data, had we used it. Therefore, we opted to focus exclusively on the geographic categories.

Selection of our initial independent variables resulted in our refined research question. We sought to:

Examine the relationship between probability of arrest, population density, and high youth
concentration and the dependent variable, crime rate, in order to determine whether related
policy changes could be effective in lowering crime rates.

The equation for the first iteration of our model was:

log(crmrte) = β0 + β1prbarr100 + β2log(density100) + β3pctymle100 + β4central + β5 ∗ west+ u

# Run model 1
model1= lm(log(crmrte)~prbarr100+log(density100)+pctymle100+central + west,data=crime)

Observations from Model 1: Highlights, Model Coefficients, and Goodness of
Fit Analysis

Troubleshooting Outliers, High Leverage, and Influence

We analyzed the Residual vs. Leverage diagnostic plot to identify influential cases, extreme values that might
influence the regression results when included or excluded from the analysis.

par(mfrow=c(1,2));plot(model1,which = 5);plot(model1,which = 4)
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There were a few high leverage points (#51, #59, and #79) with extreme predictor values, but only #79
proved highly influential, with a Cook’s distance greater than 1. We observed that the standardized residual
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of the same point (#79) was greater than 3, a definite outlier. In order to address the issue, we looked at
point #79 and found it to be the previously identified population density record with an abnormally low
value of 0.002 residents per square mile. At this point, we were more confident that the outlier was an error.
Therefore, we opted to replace the value with the mean of the density and repeat the regression.

crime$density100 = ifelse((crime$density100<0.01),
mean(crime[crime$density100>0.01,]$density100),
crime$density100)

model1= lm(log(crmrte)~prbarr100+log(density100)+pctymle100+central + west,data=crime)

After normalizing the density outlier, we saw no observations of high influence. However, there was still
one outlier observation, #25, with standardized residual greater than 3. Looking at the data, we had not
identified anything suspicious about that record, so we decided to monitor it for later models.

Goodness of Fit - Model 1

The below table shows measures of fit for Model 1.

Goodness of Fit for Model 1
Multiple R-squared Adjusted R-squared AIC

Model 1 0.67 0.65 59.88

With an adjusted R2 of 0.65, 65% of the variation in crime rate can be explained by probability of arrest,
density, and the young male population.

Explanation of Coefficients - Model 1

Model1.Coefficients Interpretation

(Intercept) -5.3408
prbarr100 -0.0084 For approximately each percentage point increase in probability of arrest, crime rate

is associated with a drop of 0.84 %, holding other variables constant.
log(density100) 0.4622 For approximately every percent increase in density, crime rate is associated with an

increase of 0.46 %, holding other variables constant.
pctymle100 0.0162 For approximately every percentage point increase in the young male population,

crime rate is associated with an increase of 1.62 %, holding other variables constant.
central -0.2874 Crime rate in the central region is 28.74 % lower than the eastern region.
west -0.5217 Crime rate in the western region is 52.17 % lower than the eastern region.

CLM3. No Perfect Multicollinearity

For a given predictor (xi), multicollinearity can be assessed by computing a score called the variance
inflation factor (or VIF), which measures how much the variance of a regression coefficient is inflated due to
multicollinearity in the model. The smallest possible value of VIF is one (absence of multicollinearity). As a
rule of thumb, a VIF value that exceeds 4 indicates a problematic amount of collinearity.
kable(t(vif(model1))) %>%
kable_styling(bootstrap_options = c("striped", "bordered"),

full_width = F, position = "center")%>%
add_header_above(c("VIF evaluation for Model1" = 5))
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VIF evaluation for Model1
prbarr100 log(density100) pctymle100 central west
1.178096 1.387008 1.113744 1.459218 1.21978

In Model 1, none of the predictor variables showed any problematic amount of collinearity. The VIF values
were well below 4 for all predictors.

CLM4-CLM5. Evaluating Zero-Conditional Mean and Homoskedasticity

Zero Conditional Mean: Looking at the Residual vs. Fitted diagnostic plot, we observed some deviations
from zero, demonstrating violations of the zero-conditional mean assumption. The more extreme dip on the
left of the plot red line dipped towards the left appeared to be mainly due to a lack of data points, but that
point notwithstanding, there were other deviations in the center of the plot. This meant that our coefficients
would be biased. This may have happened because of:

• Omitted variables
• Functional misspecifications
• Measurement errors in independent variables

par(mfrow=c(1,2));plot(model1,which = 1);plot(model1,which = 3)
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Exo-

geneity: We had a large sample size (90), so ordinary least squares (OLS) asymptotics should allow us
to proceed, despite the violation of zero-conditional mean, if we could meet the less stringent exogeneity
assumption, E(Xu) = 0 (or that X and u are uncorrelated).

If we were trying to show causality, the zero-conditional mean assumption violation would have been more of
a problem, but for our associative model, we just wanted to track the best fit line in the population. In that
scenario, our estimates would be consistent, and we would essentially meet exogeneity by definition.

We checked the correlation between the independent variables and the residuals:

meanErr1 =round(mean(model1$residuals),digits=2)
covArr1 =round(cov(crime$prbarr100,model1$residuals),digits=2)
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covden1 =round(cov(log(crime$density100) ,model1$residuals),digits=2)
covmle1 =round(cov(crime$pctymle100,model1$residuals),digits=2)

The mean of error E(u) = 0
The covariance between prob of arrest and error Cov(prbarr100,u) = 0
The covariance between density and error Cov(log(density),u) = 0
The covariance between young male pc and error Cov(pctymle100,u) = 0

None of the control variables were correlated with the error term, so we could safely infer that Model 1 was
consistent.

Homoskedasticity: Homoskedasticity says variance of residuals should be constant, with a mean of zero
and variance σ2. For homoskedasticity, we analyzed the Residual vs. Fitted and Scale-Location diagnostic
plots.

1. Looking again at the Residuals vs. Fitted plot, it appeared that the band of data points did not have a
uniform thickness, indicating heteroskedasticity.

2. The Scale-Location plot did not have a consistent horizontal band of points from left to right, again
indicating heteroskedasticity.

3. Breush-pagan test: The null hypothesis is that the model is homoskedastic.

#Breush-pagan test
bptest(model1)

##
## studentized Breusch-Pagan test
##
## data: model1
## BP = 9.6533, df = 5, p-value = 0.08568

The Breush-pagan test gave us a p-value of 0.08568, which was not sufficient to reject the null hypothesis of
homoskedacity in the model. Despite this evidence, we opted to proceed using heteroskedasticisty-robust
standard errors, as that is good practice.

CLM6. Normality of Errors

The normality of errors assumption says that the variance of residuals is constant, with a mean of zero and
variance of σ2.

To check normality of errors, we examined:

1. The Quantile-Quantile (Q-Q) plot, part of R’s standard diagnostics
2. A histogram of the errors
3. Shapiro-Wilk test (where the null hypothesis is that the errors are normal)

The Q-Q plot of residuals and the histogram of errors can be used to visually check the normality assumption.
The normal probability plot of residuals should approximately follow a straight line.

par(mfrow=c(1,2));plot(model1, which = 2)
#plot a histogram of the residual
hist(model1$residuals, breaks = 30,main="Dist. of Residuals: Model 1",xlab = "residuals",

col="steelblue")
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Looking at the above plots, we observed that the errors were not exactly normally distributed and there were

outliers pulling the data away from the diagonal. However, since we had a large dataset (>30), we were
able to rely on asymptotic properties of OLS, which state that our estimators will have normal sampling
distributions for large sample sizes.

shapiro.test(model1$residuals)

##
## Shapiro-Wilk normality test
##
## data: model1$residuals
## W = 0.98663, p-value = 0.49

The Shapiro-Wilk normality test was not sufficient to reject the null hypothesis of normality.

Analyzing Statistical and Practical Significance of Model 1

Statistical significance refers to the unlikelihood that the result is obtained by chance, i.e., the probability
that a relationship between two variables exists. We looked at the t-tests to determine whether or not to
reject the null hypothesis (which says that the parameters are equal to 0) at a 0.05 level of significance. We
used heteroskedasticity-robust standard errors to determine p-values.

coeftest(model1, vcov = vcovHC)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.3408213 0.3198298 -16.6990 < 2.2e-16 ***
## prbarr100 -0.0083781 0.0030203 -2.7739 0.006823 **
## log(density100) 0.4622285 0.0531658 8.6941 2.450e-13 ***
## pctymle100 0.0162045 0.0110567 1.4656 0.146497
## central -0.2873736 0.0978643 -2.9364 0.004282 **
## west -0.5216919 0.0775565 -6.7266 1.984e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Looking at the p-value of each estimate, we observed that probability of arrest, density, and regions (west and
central) are statistically significant. However, even though young male population did not have a statistically
significant effect on the crime rate, we know from our experience and various research conducted over years
11 that the young male population is susceptible to crime. All of the coefficients in Model 1 were of sufficient
size that we deemed all to be of practical significance.

Model 2

Model 2 built on Model 1 by adding tax per capita (taxpc) and probability of conviction (prbconv). We
investigated whether the probability of arrest (prbarr100) and prbconv were correlated, but found they were
not. We noted that this finding should be further explored, as it could indicate effects of external factors,
such as the number of arrests reported were artificially inflated, jails/prisons were overpopulated, or people
were being arrested for crimes that did not warrant arrest.

Rationale for including Tax Per Capita and Probability of Conviction:

• Tax Per Capita - Taxes are used to fund public services such as police, district attorneys, judges,
jails, and all those who work in them. Tax per person is relevant because it means a town or county
likely has more financial resources to allocate to safety and protection.

• Probability of Conviction - Intuitively, the probability of conviction likely has a strong impact on
crime rate given that convictions result in some level of “punishment” in the form of jail time, fines,
and/or public service.

The equation for Model 2 was:

log(crmrte) = β0 + β1prbarr100 + β2log(density100) + β3pctymle100+
β4central + β5west+ β6taxpc+ β7prbconv100 + u

crime$prbconv100 = crime$prbconv*100

model2= lm(log(crmrte)~prbarr100 + log(density100) + pctymle100 + central +
west + taxpc100 + prbconv100 , data=crime)

Model 2 Observations and Analysis

Goodness of Fit

First, let’s look at goodness of fit and compare it to Model 1. AIC estimates the relative quality of a model.
A lower number is better. Note the AIC for Model 2 is 30.95 compared with Model 1 at 59.88, almost a
50% improvement, based on AIC values. In addition, the adjusted R2 value for Model 2 increases to 0.75
(from Model 1’s 0.65). Because adjusted R2 measures the proportion of variation in the dependent variable
(crimerte), a high adjusted R2 is desired and accomplished with Model 2.

Goodness of Fit for Model 2
Multiple R-squared Adjusted R-squared AIC

Model 2 0.77 0.75 30.95
11http://www.nber.org/chapters/c6806.pdf
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Explanation of Coeficients - Model 2

Model.2.Coefficients Interpretation

(Intercept) -4.8419
prbarr100 -0.0102 A percentage point increase in probability of arrest is associated with a crime rate

drop of 1.02 %, holding other variables constant.
log(density100) 0.3719 A 1% increase in population density is associated with a crime rate increase of 0.37 %,

holding other variables constant.
pctymle100 0.0133 A percentage point increase in the population of young males is associated with a

crime rate increase of 1.33 %, holding other variables constant.
central -0.2407 Crime rate in the central region is 24.07 % lower than the eastern region.

west -0.4585 Crime rate in the western region is 45.85 % lower than the eastern region.
taxpc100 0.0001 A $1 increase in the taxes paid per person is associated with an increase in the crime

rate of 0.01 %, holding other variables constant.
prbconv100 -0.0046 A percentage point increase in the conviction rate is associated with a 0.46 %

decrease in crime rate, holding other variables constant.

CLM3. Quantifying Multicollinearity

When variables in a model are highly correlated but not perfectly collinear, linear regression works, but
estimated values are much less precise.

In the case of Model 2, the VIF scores for each independent variable indicated little to no multicollinearity.
kable(t(vif(model2))) %>%
kable_styling(bootstrap_options = c("striped", "bordered"),

full_width = F, position = "center")%>%
add_header_above(c("VIF evaluation for Model 2" = 7))

VIF evaluation for Model 2
prbarr100 log(density100) pctymle100 central west taxpc100 prbconv100
1.228996 1.549802 1.174992 1.498187 1.278611 1.135137 1.140064

CLM4. Zero Conditional Mean

In the Residuals vs. Fitted plot below, the red spline curve should be straight and centered at zero on the
y-axis to meet the zero conditional mean assumption. For the most part, the red line is straight at zero on
the y-axis and we concluded this assumption was met. The slight upward bend on the left appeared to be
the result of a lack of data.
plot(model2,which = 1)
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CLM5. Assessing Heteroskedasticity Levels

We assessed levels of heteroskedasticity by evaluating the Scale-Location plot and conducting a Breusch-Pagan
Test. As seen in the Scale-Location plot below, there is a narrow-wide-narrow shape to the data in combination
with a “wavy” red line. Both of these indicate the presence of heteroskedasticity.
plot(model2,which = 3)
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In the Breush-pagan output (below), the p-value equals 0.20 which was not sufficient to reject the null
hypothesis of homoskedasticity in the model. As with Model 1, we opted to proceed using heteroskedasticisty-
robust standard errors.
# Confirm heteroskedasticity with Breusch-Pagan test
bptest(model2)

##
## studentized Breusch-Pagan test
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##
## data: model2
## BP = 9.768, df = 7, p-value = 0.2021

CLM6. Normality of Errors

To understand the normality of the residuals, the below shows the Q-Q Plot and a histogram of residuals.

Ideally, the Q-Q plot’s data points would perfectly align, and for the most part, we can see that effect below.
Due to outliers, data points 24, 35, and 82 contributed toward a deviation from the straight line.

This outcome can also be seen in the adjacent histogram of Model 2 residuals. A residual histogram should
reflect a normal distribution. In this case, the outliers resulted in a left-skewness and too much variability in
the center values.

In-depth analysis of the above three data points, in addition to considering the possibility of omitted variable
bias, should be conducted to coerce a more normal distribution of residuals.
par(mfrow=c(1,2));plot(model2, which = 2);hist(model2$residuals, breaks = 40)
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A further gauge of model strength is measuring the covariance of the dependent variable against each of the
independent variables. The calculation should result in “0” for each comparison as it does for Model 2 below.

## [1] "Model 2 Residual Mean : 0"
## [1] "Probability of Arrest : 0"
## [1] "Population Density: 0"
## [1] "Percent Young Males: 0"
## [1] "Central Region: 0"
## [1] "West Region: 0"
## [1] "Tax Per Capita: 0"
## [1] "Probability of Conviction: 0"
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Identifying Outliers, Leverage, and Influence

As we saw in our evaluations of Model 2, outliers influenced some of our diagnostics. The below two charts
provide insight into which data points resulted in leverage and influence.

In the Residuals vs. Leverage diagram, data points #25 and #51 fall far to the right on the x-axis, indicating
they had sizable leverage. Of even greater note is #25, which fell slightly outside the Cook’s distance of .5,
indicating substantial influence and the cause of the regression line moving up on the right-hand side.

Point #25 is Dare County, a small county on the Atlantic. It is predominantly white and wealthy, and its
main draw is tourism. Its composition could be considered an anomaly when evaluating crime rate, though
we did not remove it from this analysis.
par(mfrow=c(1,2));plot(model2,which = 5) ;plot(model2,which = 4)
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Analyzing the Statistical and Practical Significance of Model 2

Statistical significance measures how unlikely it is that something happens by chance. As with Model 1, we
looked at the t-tests to determine whether or not to reject the null hypothesis and used heteroskedasticity-
robust standard errors to determine p-values.

Based on the p-values below, we can conclude the following variables have statistically significant relationships
with crime rate: probability of arrest, density, central, west, and probability of conviction.

Interestingly, tax per capita did not reflect statistical significance. It also showed a slight positive relationship
with crime rates in our model, which was counterintuitive, based on our assumptions that more public funding
would correlate with lower crime. This may be another effect of population density, as urban centers tend to
have higher tax rates (sometimes including city taxes). In order to make a clearer assessment of this variable,
we would need to normalize tax rates across the state and re-examine the effects. For those variables with a
p-value < 0.05, the coefficients were substantial enough to warrant practical significance.
coeftest(model2, vcov=vcovHC)

##
## t test of coefficients:
##
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## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.8419e+00 3.6377e-01 -13.3104 < 2.2e-16 ***
## prbarr100 -1.0175e-02 3.8813e-03 -2.6216 0.010429 *
## log(density100) 3.7193e-01 5.7207e-02 6.5014 5.833e-09 ***
## pctymle100 1.3345e-02 8.5195e-03 1.5664 0.121102
## central -2.4066e-01 7.4230e-02 -3.2421 0.001716 **
## west -4.5850e-01 7.4939e-02 -6.1183 3.084e-08 ***
## taxpc100 5.6376e-05 4.9215e-05 1.1455 0.255334
## prbconv100 -4.5515e-03 1.0771e-03 -4.2256 6.143e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model 3

Our third model added more coviarates. Before running the model, we saw several pitfalls to this approach:

• Added variables could have correlation with existing variables or each other. We would see if this is the
case when examining the model for CLM assumption 3.

• Added variables increase the degrees of freedom in error calculations, reducing precision in all variables.

For variables such as crmrte or density100, the transformations we applied for the models above were
applied here for consistency. Once again, log(crmrte) is our outcome variable. We added the following
variables:

• avgsen and prbpris Probability of prison and average sentence are plausible deterrents to crime.
• pctmin80. As noted earlier, this variable could be an indicator of poverty.
• Various wage measures. We kept each wage variable separate. We considered creating a composite

wage metric (e.g., average), but the industries across the diversity of North Carolina counties vary
mightily, and many key industries are not represented in this set. Without knowing how many people
work in those industries (thus enabling a weighted average), a simple averaging of the wage categories
would bear little resemblance to each county’s actual average wage or any real-life metric. Further,
data on industry-specific weekly wages spanned approximately six categories of industry, but those six
categories did not encompass the following top industries in North Carolina: Textiles, Aerospace &
Defense, Energy, and Furniture.

# Run model 3
crime$prbpris100 = 100*crime$prbpris
model3 <- lm(log(crmrte)~prbarr100+log(density100)+pctymle100+pctmin80+central + west +

taxpc100 + avgsen + prbconv100 + prbpris100 + wcon + wsta + wfed + wloc + wser + wfir +
wtrd + wtuc + wmfg, data=crime)

paste("R squared value of model3 : ", round(summary(model3)$r.squared,digits = 2))
paste("Adjusted R squared value of model 3: ",

round(summary(model3)$adj.r.squared,digits = 2))
paste("AIC of model 3 :" ,round(AIC(model3),2))

## [1] "R squared value of model3 : 0.86"
## [1] "Adjusted R squared value of model 3: 0.82"
## [1] "AIC of model 3 : 12.61"

As expected, the regular and adjusted R2 increased with the addition of the extra variables. The AIC shrank
as well, but there were other issues with this model:
coeftest(model3, vcov = vcovHC)

##
## t test of coefficients:
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##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.7550e+00 6.7903e-01 -8.4753 2.434e-12 ***
## prbarr100 -1.2910e-02 5.0515e-03 -2.5557 0.012772 *
## log(density100) 3.0456e-01 7.6099e-02 4.0022 0.000154 ***
## pctymle100 3.4722e-02 1.0369e-02 3.3487 0.001310 **
## pctmin80 8.8659e-03 3.3479e-03 2.6482 0.009993 **
## central -1.3175e-01 7.8450e-02 -1.6794 0.097537 .
## west -1.0786e-01 1.2314e-01 -0.8759 0.384077
## taxpc100 8.6520e-05 7.2033e-05 1.2011 0.233754
## avgsen 3.7984e-03 1.3864e-02 0.2740 0.784910
## prbconv100 -5.1317e-03 1.2428e-03 -4.1291 9.920e-05 ***
## prbpris100 1.9028e-03 4.0520e-03 0.4696 0.640101
## wcon 1.3526e-04 9.6465e-04 0.1402 0.888894
## wsta -1.2606e-03 7.0172e-04 -1.7964 0.076740 .
## wfed 2.5354e-03 7.7216e-04 3.2835 0.001602 **
## wloc 1.9584e-03 1.9623e-03 0.9980 0.321711
## wser -2.1843e-03 1.1806e-03 -1.8502 0.068506 .
## wfir -8.1943e-04 1.0301e-03 -0.7955 0.429038
## wtrd -3.7554e-04 1.7665e-03 -0.2126 0.832262
## wtuc 3.1746e-04 6.2397e-04 0.5088 0.612509
## wmfg 5.8805e-05 4.3581e-04 0.1349 0.893052
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Fewer than half the variables were statistically significant. Moreover, many variables were not practically
significant, either. The wage measures were consistently small, as was avgsen. Of the new variables added,
only wfed was statistically significant. All others, even combined, were not:
linearHypothesis(model3, c("avgsen = 0", "prbpris100 = 0", "wcon = 0", "wsta = 0", "wloc = 0",

"wser = 0", "wfir = 0", "wtrd = 0", "wtuc = 0", "wmfg = 0"),
vcov = vcovHC)[4]

## Pr(>F)
## 1
## 2 0.326

Model 3 Assumptions

Despite the model’s shortcomings, it is worth briefly considering the CLM assumptions:

CLM3. No Perfect Multicollinearity

vif(model3)

## prbarr100 log(density100) pctymle100 pctmin80
## 1.586542 2.993415 1.415751 2.684619
## central west taxpc100 avgsen
## 2.073516 3.155513 1.453810 1.573661
## prbconv100 prbpris100 wcon wsta
## 1.485782 1.187407 2.185729 1.509293
## wfed wloc wser wfir
## 3.188810 2.302690 2.587199 2.714289
## wtrd wtuc wmfg
## 3.031354 1.760963 1.881098
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The VIFs for Model 3 were consistently higher than 1 and 2, but not so high as to constitute a violation.

CLM4-CLM5. Evaluating Endogeneity vs Exogeneity and Homoskedasticity

Model 3’s diagnostic plots (not shown) violated the zero conditional mean assumption and demonstrated
clear heteroskedasticity. Model 3 did meet the lesser standard of exogeneity:

c <- 0
for (var in list(crime$prbarr100, log(crime$density100), crime$pctymle100, crime$pctmin80,

crime$central, crime$west, crime$taxpc, crime$avgsen,
crime$prbconv100, crime$prbpris100, crime$wcon, crime$wsta, crime$wfed,
crime$wloc, crime$wser, crime$wfir, crime$wtrd, crime$wtuc, crime$wmfg)){

if (abs(cov(model3$residuals,var)) > 1e-10){
c <- c+ 1

}
}
paste(c, "variables have (absolute value of) covariance with the residuals greater than 1x10^-10")
paste("The mean of the residuals is", round(mean(model3$residuals),2))

## [1] "0 variables have (absolute value of) covariance with the residuals greater than 1x10^-10"
## [1] "The mean of the residuals is 0"

CLM6. Normality of Errors

Model 3’s Normal Q-Q plot showed violations of normality among errors at both ends, especially at the lower
end. As with previous models, our sample size allowed us to tolerate deviations from this assumption.

4. Model Comparison

The following table compares all three of our models. For space considerations, we have omitted five wage
variables from Model 3 whose coefficients were less than 0.001.
not_prac <- c()
for(j in 1:20){

if (abs(model3$coefficients[j]) < 1e-3){# if a |coefficient| is less than 0.001
if(names(model3$coefficients[j]) != "taxpc100"){ #keep taxpc100 as it is in earlier models

not_prac <- append(not_prac, names(model3$coefficients[j]))
}

}
}

# robust standard errors
se.model1 = sqrt(diag(vcovHC(model1)))
se.model2 = sqrt(diag(vcovHC(model2)))
se.model3 = sqrt(diag(vcovHC(model3)))

stargazer(model1, model2, model3, type = "latex",
no.space = TRUE,
font.size = "small",
column.labels = c("Model 1", "Model 2", "Model 3"),
report = "vcs*", # report SEs
title = "Linear Models Predicting Crime Rate",
omit = not_prac, # omit the variables found earlier as not prac significant
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keep.stat = c("rsq", "adj.rsq", "n"),
add.lines=list(c("AIC", round(AIC(model1),2), round(AIC(model2),2), round(AIC(model3),2)),

c("BIC", round(BIC(model1),2), round(BIC(model2),2), round(BIC(model3),2))),
se = list(se.model1, se.model2,se.model3), # Add robust SEs
star.cutoffs = c(0.05, 0.01, 0.001)) # stringent star cutoffs

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
% Date and time: Fri, Nov 30, 2018 - 14:19:28

Table 1: Linear Models Predicting Crime Rate

Dependent variable:
log(crmrte)

Model 1 Model 2 Model 3
(1) (2) (3)

prbarr100 −0.008 −0.010 −0.013
(0.003)∗∗ (0.004)∗∗ (0.005)∗

log(density100) 0.462 0.372 0.305
(0.053)∗∗∗ (0.057)∗∗∗ (0.076)∗∗∗

pctymle100 0.016 0.013 0.035
(0.011) (0.009) (0.010)∗∗∗

pctmin80 0.009
(0.003)∗∗

central −0.287 −0.241 −0.132
(0.098)∗∗ (0.074)∗∗ (0.078)

west −0.522 −0.459 −0.108
(0.078)∗∗∗ (0.075)∗∗∗ (0.123)

taxpc100 0.0001 0.0001
(0.00005) (0.0001)

avgsen 0.004
(0.014)

prbconv100 −0.005 −0.005
(0.001)∗∗∗ (0.001)∗∗∗

prbpris100 0.002
(0.004)

wsta −0.001
(0.001)

wfed 0.003
(0.001)∗∗

wloc 0.002
(0.002)

wser −0.002
(0.001)

Constant −5.341 −4.842 −5.755
(0.320)∗∗∗ (0.364)∗∗∗ (0.679)∗∗∗

AIC 59.88 30.95 12.61
BIC 77.38 53.45 65.11
Observations 90 90 90
R2 0.673 0.773 0.858
Adjusted R2 0.653 0.754 0.820

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Parsimony

As expected, R2 increased as more variables are added to the models. The adjusted R2, which penalizes
models with more variables, noted a sizeable difference between 1 and 2, but a more modest gain between
2 and 3. In terms of parsimony, Model 3 scored best in AIC while Model 2 scored best in BIC. This is
due to the difference in the two calculations; BIC assesses harsher penalties than AIC for extra variables
as the number of observations increases – as in the case here, where n = 90 (the multiplier of k, number of
parameters, is 2 for AIC and log(90) or ~ 4.5 for BIC).

Significance

In statistical significance, four of five Model 1 coefficients ranked as significant, compared to five of seven for
Model 2, and six of 19 for Model 3. Model 3 was also by far the weakest in practical significance.

Variance of Coefficient Estimates

All three models have produced unbiased linear estimates for each parameter. It is also worth noting which
model had the smallest variances. Consider the following table, which compares variances for common
parameters across models:
kable(data.frame(c(round(diag(vcovHC(model1))[2:6],6),"",""),

round(diag(vcovHC(model2))[c(2:6,7,8)],6),
round(diag(vcovHC(model3))[c(2:4,6:8,10)],6)),

format = "latex",
col.names = c("Model 1", "Model 2", "Model 3"))

Model 1 Model 2 Model 3
prbarr100 9e-06 0.000015 0.000026
log(density100) 0.002827 0.003273 0.005791
pctymle100 0.000122 0.000073 0.000108
central 0.009577 0.005510 0.006154
west 0.006015 0.005616 0.015162
taxpc100 0.000000 0.000000
prbconv100 0.000001 0.000002

Model 1 “wins” for prbarr100 and log(density100), while Model 2 wins for pctymle100, central and
west, while also beating Model 3 (albeit by slim margins) for prbconv100. We noted at the beginning of
Model 3 that adding variables decreases the precision of coefficient estimates, and none of its coefficient
variances were lowest when compared to Models 1 and 2.

Conclusion

When compared side-by-side, each model has relative strengths and weaknesses. Model 1 has strong significance
in its coefficients, but poor overall model metrics. Model 3 has a strong adjusted R2, but the quantity of
coefficients reduced the accuracy of its coefficients. Model 2 is strong on both fronts and, all factors considered,
our strongest model.

5. Omitted Variables
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We identified many potential omitted variables in our data and, consequently, our models. The table below
summarizes the most important variables we identified as missing in this analysis (in our model-building
process, we identified many more, but we wanted to highlight the most critical variables here). We also
estimated the sizes of biases and the directions in which they would vary with crime rate (with respect to
zero) and the other independent variables.

Omitted Variable Bias with y Bias with x’s
Unemployment Positive/large. Lack of employment may push

more individuals to such crimes as petty theft.
Positive/large

Education level/
School quality

Negative/large. We believe education level
positively affects income, while school quality keeps
younger people engaged.

Negative/moderate

Poverty level Positive/large. The pressure of being poor for long
periods of time could lead individuals to commit
crimes in search of money.

Positive/large

Income/cost of living
ratio

Negative/large. A paycheck that fully covers one’s
needs can help avoid crime-inducing circumstances.

Negative/small

Availability/quality
of social services

Negative/moderate. Strong social safety nets can
help individuals weather periods of unemployment
or potentially crime-inducing life circumstances.

Could be positive or
negative

Cultural factors Could be positive or negative, with varying size.
Religious attendance Negative/large. Belonging to a church or similar

civic institution confers levels of support to
individuals and strengthens their bonds with their
neighbors.

Could be positive or
negative, with varying
size.

Climate Positive (with temperature)/moderate. Warm
weather months typically show an increase in crime.
The same may be true for warm weather counties.

None

Family support Negative/large Negative/large
Police corruption Positive/moderate Could be positive or

negative, with varying
size

Criminal justice
policies

Could be positive or negative, with varying size Could be positive or
negative, with varying
size

Citizens’ attitudes
towards crime

Could be positive or negative, with varying size Could be positive or
negative, with varying
size

Further, as noted in Model 2, we also suspect that the tax per capita variable contained omitted variable bias.

We could not accurately estimate the collective effect of the omitted variables above on the outcome variable.
We determined that there were more variables that were likely to bias in the positive direction (away from
zero) than negative with the dependent variable. However, most of these would also vary in the positive
direction with many of the independent variables. Our best guess is that there was an overall moderate
positive bias from the identified omitted variables.

We identified no good potential proxies for the omitted variables in the dataset. The income elements
of poverty level and income/cost-of-living ratio are captured to some degree in the wage data, but the
expense portions are not. Police corruption and criminal justice policies are buried along with several other
omitted variables within probability of arrest and probability of conviction, but we did not believe that these
represented the principal drivers in either variable.

Some of our data fields were proxies for multiple omitted variables. We discussed the inherent issues with
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probability of arrest earlier in our analysis. Probability of conviction contained similar problems. Although
conviction data was sourced from the North Carolina Department of Correction, factors such as bribery,
corruption, overpopulation in jails, and funding impact conviction rates and represent omitted variable bias.
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6. Policy Suggestions and Conclusions

When creating our models, we also considered what factors could be influenced by the governor. It is one
thing to understand the determinants of crime, but for this project, we were specifically asked to identify
determinants of crime and make related policy recommendations. We could not make any firm causal claims
based on the information available, but we observed substantial enough relationships to reach associative
conclusions and formulate recommendations for the campaign.

The variable in our models that carried the greatest weight was population density, which had a positive
relationship with crime rates. Population density is not something the candidate can control; it would not be
practical to say, “I will relocate people from urban areas into rural ones to reduce crime.” However, it does
help guide us in determining where to focus our recommendations and allocate resources geographically.

The young male percentage of the population is similarly something that policy cannot affect reasonably.
When including percent young males in the models, though, we did so with the understanding that further
analysis may indicate an issue with the quality of schools, lack of attendance, economic conditions, and
unemployment, all of which could be included in a governor’s platform.

Policy changes are most effective in other areas, particularly those that deal with the uses of government
funding. Based on our best model, we recommend that the candidate stress policy changes that would affect
two of these areas: probability of arrest and probability of conviction. Our model suggested a negative
relationship between crime rates and probability of arrest, which we were using as a proxy variable for police
effectiveness. Probability of conviction also demonstrated a negative relationship with crime rates, indicating
a connection with the certainty of punishment.

Policy Recommendations

We recommend that the candidate focus on the following policy changes:

• Increased resources for law enforcement, in the form of additional staff and training/development for
existing staff. The intent would be to increase the probability of arrest and the quality of the work
going into each arrest, which would improve the probability of conviction.

• Increased resources for the judiciary, including incentives to recruit quality prosecutors. Success in this
area would lead to higher probability of conviction.

• Renewed focus on community relations, in order to increase the public’s quantity and quality of
interactions with the police. This could increase their willingness to provide quality information to
police and, if necessary, testify. We hypothesize that community involvement would increase both
probability of arrest and conviction.

• Increase availability of victim counseling services, so that, after reporting a crime, the public would not
be intimidated by the judicial process. We expect this would increase probability of conviction.

• Due to the positive correlation between population density and crime rates in our model, concentrate
these efforts first in densely populated areas.

• Next, focus on the counties in the eastern region, which exhibited higher average crime rates than the
central and western regions.

Note: Prior to implementation, community relations and victim counseling would require follow-up studies
to ensure that we had a firm understanding of the current extent and effectiveness of these programs.

As discussed, we considered the effects of per capita tax rates to be inconclusive, potentially containing some
omitted variable bias, in addition to being statistically insignificant. We would not recommend the candidate
base any tax policy assertions on the slight positive relationship, such as “lowering taxes reduces crime.”
Understanding tax effects further would require additional data and research.

The Omitted Variables section above is an overview of data we considered critical for conducting more
in-depth analyses and providing finely tuned policy recommendations. Without understanding unemployment,
household income/poverty levels, types of crimes, and corruption levels, we kept our recommendations broad.
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